zhangyile - 默认分类 https://blog.zhangyile.site/category/default/ 只是一个默认分类 蓝桥杯算法训练【基础算法+数据结构+搜索图论+数学知识】 https://blog.zhangyile.site/archives/434/ 2025-02-23T18:56:00+08:00 常用模板一:基础算法快速排序算法模板 —— 模板题 AcWing 785. 快速排序void quick_sort(int q[], int l, int r) { if (l >= r) return; int i = l - 1, j = r + 1, x = q[l + r >> 1]; while (i < j) { do i ++ ; while (q[i] < x); do j -- ; while (q[j] > x); if (i < j) swap(q[i], q[j]); } quick_sort(q, l, j), quick_sort(q, j + 1, r); }归并排序算法模板 —— 模板题 AcWing 787. 归并排序void merge_sort(int q[], int l, int r) { if (l >= r) return; int mid = l + r >> 1; merge_sort(q, l, mid); merge_sort(q, mid + 1, r); int k = 0, i = l, j = mid + 1; while (i <= mid && j <= r) if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ]; else tmp[k ++ ] = q[j ++ ]; while (i <= mid) tmp[k ++ ] = q[i ++ ]; while (j <= r) tmp[k ++ ] = q[j ++ ]; for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j]; }整数二分算法模板 —— 模板题 AcWing 789. 数的范围bool check(int x) {/* ... */} // 检查x是否满足某种性质 // 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用: int bsearch_1(int l, int r) { while (l < r) { int mid = l + r >> 1; if (check(mid)) r = mid; // check()判断mid是否满足性质 else l = mid + 1; } return l; } // 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用: int bsearch_2(int l, int r) { while (l < r) { int mid = l + r + 1 >> 1; if (check(mid)) l = mid; else r = mid - 1; } return l; }浮点数二分算法模板 —— 模板题 AcWing 790. 数的三次方根bool check(double x) {/* ... */} // 检查x是否满足某种性质 double bsearch_3(double l, double r) { const double eps = 1e-6; // eps 表示精度,取决于题目对精度的要求 while (r - l > eps) { double mid = (l + r) / 2; if (check(mid)) r = mid; else l = mid; } return l; }高精度加法 —— 模板题 AcWing 791. 高精度加法// C = A + B, A >= 0, B >= 0 vector<int> add(vector<int> &A, vector<int> &B) { if (A.size() < B.size()) return add(B, A); vector<int> C; int t = 0; for (int i = 0; i < A.size(); i ++ ) { t += A[i]; if (i < B.size()) t += B[i]; C.push_back(t % 10); t /= 10; } if (t) C.push_back(t); return C; }高精度减法 —— 模板题 AcWing 792. // C = A - B, 满足A >= B, A >= 0, B >= 0 vector<int> sub(vector<int> &A, vector<int> &B) { vector<int> C; for (int i = 0, t = 0; i < A.size(); i ++ ) { t = A[i] - t; if (i < B.size()) t -= B[i]; C.push_back((t + 10) % 10); if (t < 0) t = 1; else t = 0; } while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }高精度乘法 —— 模板题 AcWing 793. 高精度乘法// C = A * b, A >= 0, b >= 0 vector<int> mul(vector<int> &A, int b) { vector<int> C; int t = 0; for (int i = 0; i < A.size() || t; i ++ ) { if (i < A.size()) t += A[i] * b; C.push_back(t % 10); t /= 10; } while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }高精度除以低精度 —— 模板题 AcWing 794. 高精度除法// A / b = C ... r, A >= 0, b > 0 vector<int> div(vector<int> &A, int b, int &r) { vector<int> C; r = 0; for (int i = A.size() - 1; i >= 0; i -- ) { r = r * 10 + A[i]; C.push_back(r / b); r %= b; } reverse(C.begin(), C.end()); while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }一维前缀和 —— 模板题 AcWing 795. 前缀和S[i] = a[1] + a[2] + ... a[i]a[l] + ... + a[r] = S[r] - S[l - 1]二维前缀和 —— 模板题 AcWing 796. 子矩阵的和S[i, j] = 第i行j列格子左上部分所有元素的和以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1, y1 - 1]一维差分 —— 模板题 AcWing 797. 差分给区间[l, r]中的每个数加上c:B[l] += c, B[r + 1] -= c二维差分 —— 模板题 AcWing 798. 差分矩阵给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上c:S[x1, y1] += c, S[x2 + 1, y1] -= c, S[x1, y2 + 1] -= c, S[x2 + 1, y2 + 1] += c位运算 —— 模板题 AcWing 801. 二进制中1的个数求n的第k位数字: n >> k & 1返回n的最后一位1:lowbit(n) = n & -n双指针算法 —— 模板题 AcWIng 799. 最长连续不重复子序列, AcWing 800. 数组元素的目标和for (int i = 0, j = 0; i < n; i ++ ) { while (j < i && check(i, j)) j ++ ; // 具体问题的逻辑 }常见问题分类:(1) 对于一个序列,用两个指针维护一段区间(2) 对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作离散化 —— 模板题 AcWing 802. 区间和vector<int> alls; // 存储所有待离散化的值 sort(alls.begin(), alls.end()); // 将所有值排序 alls.erase(unique(alls.begin(), alls.end()), alls.end()); // 去掉重复元素 // 二分求出x对应的离散化的值 int find(int x) // 找到第一个大于等于x的位置 { int l = 0, r = alls.size() - 1; while (l < r) { int mid = l + r >> 1; if (alls[mid] >= x) r = mid; else l = mid + 1; } return r + 1; // 映射到1, 2, ...n }区间合并 —— 模板题 AcWing 803. 区间合并// 将所有存在交集的区间合并 void merge(vector<PII> &segs) { vector<PII> res; sort(segs.begin(), segs.end()); int st = -2e9, ed = -2e9; for (auto seg : segs) if (ed < seg.first) { if (st != -2e9) res.push_back({st, ed}); st = seg.first, ed = seg.second; } else ed = max(ed, seg.second); if (st != -2e9) res.push_back({st, ed}); segs = res; }常用模板二:数据结构单链表 —— 模板题 AcWing 826. 单链表// head存储链表头,e[]存储节点的值,ne[]存储节点的next指针,idx表示当前用到了哪个节点 int head, e[N], ne[N], idx; // 初始化 void init() { head = -1; idx = 0; } // 在链表头插入一个数a void insert(int a) { e[idx] = a, ne[idx] = head, head = idx ++ ; } // 将头结点删除,需要保证头结点存在 void remove() { head = ne[head]; }双链表 —— 模板题 AcWing 827. 双链表// e[]表示节点的值,l[]表示节点的左指针,r[]表示节点的右指针,idx表示当前用到了哪个节点 int e[N], l[N], r[N], idx; // 初始化 void init() { //0是左端点,1是右端点 r[0] = 1, l[1] = 0; idx = 2; } // 在节点a的右边插入一个数x void insert(int a, int x) { e[idx] = x; l[idx] = a, r[idx] = r[a]; l[r[a]] = idx, r[a] = idx ++ ; } // 删除节点a void remove(int a) { l[r[a]] = l[a]; r[l[a]] = r[a]; }栈 —— 模板题 AcWing 828. 模拟栈// tt表示栈顶 int stk[N], tt = 0; // 向栈顶插入一个数 stk[ ++ tt] = x; // 从栈顶弹出一个数 tt -- ; // 栈顶的值 stk[tt]; // 判断栈是否为空,如果 tt > 0,则表示不为空 if (tt > 0) { }队列 —— 模板题 AcWing 829. 模拟队列普通队列:// hh 表示队头,tt表示队尾 int q[N], hh = 0, tt = -1; // 向队尾插入一个数 q[ ++ tt] = x; // 从队头弹出一个数 hh ++ ; // 队头的值 q[hh]; // 判断队列是否为空,如果 hh <= tt,则表示不为空 if (hh <= tt) { }循环队列// hh 表示队头,tt表示队尾的后一个位置 int q[N], hh = 0, tt = 0; // 向队尾插入一个数 q[tt ++ ] = x; if (tt == N) tt = 0; // 从队头弹出一个数 hh ++ ; if (hh == N) hh = 0; // 队头的值 q[hh]; // 判断队列是否为空,如果hh != tt,则表示不为空 if (hh != tt) { }单调栈 —— 模板题 AcWing 830. 单调栈常见模型:找出每个数左边离它最近的比它大/小的数int tt = 0; for (int i = 1; i <= n; i ++ ) { while (tt && check(stk[tt], i)) tt -- ; stk[ ++ tt] = i; }单调队列 —— 模板题 AcWing 154. 滑动窗口常见模型:找出滑动窗口中的最大值/最小值int hh = 0, tt = -1; for (int i = 0; i < n; i ++ ) { while (hh <= tt && check_out(q[hh])) hh ++ ; // 判断队头是否滑出窗口 while (hh <= tt && check(q[tt], i)) tt -- ; q[ ++ tt] = i; }KMP —— 模板题 AcWing 831. KMP字符串// s[]是长文本,p[]是模式串,n是s的长度,m是p的长度 求模式串的Next数组: for (int i = 2, j = 0; i <= m; i ++ ) { while (j && p[i] != p[j + 1]) j = ne[j]; if (p[i] == p[j + 1]) j ++ ; ne[i] = j; } // 匹配 for (int i = 1, j = 0; i <= n; i ++ ) { while (j && s[i] != p[j + 1]) j = ne[j]; if (s[i] == p[j + 1]) j ++ ; if (j == m) { j = ne[j]; // 匹配成功后的逻辑 } }Trie树 —— 模板题 AcWing 835. Trie字符串统计int son[N][26], cnt[N], idx; // 0号点既是根节点,又是空节点 // son[][]存储树中每个节点的子节点 // cnt[]存储以每个节点结尾的单词数量 // 插入一个字符串 void insert(char *str) { int p = 0; for (int i = 0; str[i]; i ++ ) { int u = str[i] - 'a'; if (!son[p][u]) son[p][u] = ++ idx; p = son[p][u]; } cnt[p] ++ ; } // 查询字符串出现的次数 int query(char *str) { int p = 0; for (int i = 0; str[i]; i ++ ) { int u = str[i] - 'a'; if (!son[p][u]) return 0; p = son[p][u]; } return cnt[p]; }并查集 —— 模板题 AcWing 836. 合并集合, AcWing 837. 连通块中点的数量(1)朴素并查集: int p[N]; //存储每个点的祖宗节点 // 返回x的祖宗节点 int find(int x) { if (p[x] != x) p[x] = find(p[x]); return p[x]; } // 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) p[i] = i; // 合并a和b所在的两个集合: p[find(a)] = find(b); (2)维护size的并查集: int p[N], size[N]; //p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量 // 返回x的祖宗节点 int find(int x) { if (p[x] != x) p[x] = find(p[x]); return p[x]; } // 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) { p[i] = i; size[i] = 1; } // 合并a和b所在的两个集合: size[find(b)] += size[find(a)]; p[find(a)] = find(b);(3)维护到祖宗节点距离的并查集: int p[N], d[N]; //p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离 // 返回x的祖宗节点 int find(int x) { if (p[x] != x) { int u = find(p[x]); d[x] += d[p[x]]; p[x] = u; } return p[x]; } // 初始化,假定节点编号是1~n for (int i = 1; i <= n; i ++ ) { p[i] = i; d[i] = 0; } // 合并a和b所在的两个集合: p[find(a)] = find(b); d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量堆 —— 模板题 AcWing 838. 堆排序, AcWing 839. 模拟堆// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1 // ph[k]存储第k个插入的点在堆中的位置 // hp[k]存储堆中下标是k的点是第几个插入的 int h[N], ph[N], hp[N], size; // 交换两个点,及其映射关系 void heap_swap(int a, int b) { swap(ph[hp[a]],ph[hp[b]]); swap(hp[a], hp[b]); swap(h[a], h[b]); } void down(int u) { int t = u; if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2; if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1; if (u != t) { heap_swap(u, t); down(t); } } void up(int u) { while (u / 2 && h[u] < h[u / 2]) { heap_swap(u, u / 2); u >>= 1; } } // O(n)建堆 for (int i = n / 2; i; i -- ) down(i);一般哈希 —— 模板题 AcWing 840. 模拟散列表(1) 拉链法 int h[N], e[N], ne[N], idx; // 向哈希表中插入一个数 void insert(int x) { int k = (x % N + N) % N; e[idx] = x; ne[idx] = h[k]; h[k] = idx ++ ; } // 在哈希表中查询某个数是否存在 bool find(int x) { int k = (x % N + N) % N; for (int i = h[k]; i != -1; i = ne[i]) if (e[i] == x) return true; return false; }(2) 开放寻址法 int h[N]; // 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置 int find(int x) { int t = (x % N + N) % N; while (h[t] != null && h[t] != x) { t ++ ; if (t == N) t = 0; } return t; }字符串哈希 —— 模板题 AcWing 841. 字符串哈希核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果typedef unsigned long long ULL; ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64 // 初始化 p[0] = 1; for (int i = 1; i <= n; i ++ ) { h[i] = h[i - 1] * P + str[i]; p[i] = p[i - 1] * P; } // 计算子串 str[l ~ r] 的哈希值 ULL get(int l, int r) { return h[r] - h[l - 1] * p[r - l + 1]; }C++ STL简介vector, 变长数组,倍增的思想 size() 返回元素个数 empty() 返回是否为空 clear() 清空 front()/back() push_back()/pop_back() begin()/end() [] 支持比较运算,按字典序 pair<int, int> first, 第一个元素 second, 第二个元素 支持比较运算,以first为第一关键字,以second为第二关键字(字典序) string,字符串 size()/length() 返回字符串长度 empty() clear() substr(起始下标,(子串长度)) 返回子串 c_str() 返回字符串所在字符数组的起始地址 queue, 队列 size() empty() push() 向队尾插入一个元素 front() 返回队头元素 back() 返回队尾元素 pop() 弹出队头元素 priority_queue, 优先队列,默认是大根堆 size() empty() push() 插入一个元素 top() 返回堆顶元素 pop() 弹出堆顶元素 定义成小根堆的方式:priority_queue<int, vector<int>, greater<int>> q; stack, 栈 size() empty() push() 向栈顶插入一个元素 top() 返回栈顶元素 pop() 弹出栈顶元素 deque, 双端队列 size() empty() clear() front()/back() push_back()/pop_back() push_front()/pop_front() begin()/end() [] set, map, multiset, multimap, 基于平衡二叉树(红黑树),动态维护有序序列 size() empty() clear() begin()/end() ++, -- 返回前驱和后继,时间复杂度 O(logn) set/multiset insert() 插入一个数 find() 查找一个数 count() 返回某一个数的个数 erase() (1) 输入是一个数x,删除所有x O(k + logn) (2) 输入一个迭代器,删除这个迭代器 lower_bound()/upper_bound() lower_bound(x) 返回大于等于x的最小的数的迭代器 upper_bound(x) 返回大于x的最小的数的迭代器 map/multimap insert() 插入的数是一个pair erase() 输入的参数是pair或者迭代器 find() [] 注意multimap不支持此操作。 时间复杂度是 O(logn) lower_bound()/upper_bound() unordered_set, unordered_map, unordered_multiset, unordered_multimap, 哈希表 和上面类似,增删改查的时间复杂度是 O(1) 不支持 lower_bound()/upper_bound(), 迭代器的++,-- bitset, 圧位 bitset<10000> s; ~, &, |, ^ >>, << ==, != [] count() 返回有多少个1 any() 判断是否至少有一个1 none() 判断是否全为0 set() 把所有位置成1 set(k, v) 将第k位变成v reset() 把所有位变成0 flip() 等价于~ flip(k) 把第k位取反常用模板三:搜索与图论树与图的存储树是一种特殊的图,与图的存储方式相同。对于无向图中的边ab,存储两条有向边a->b, b->a。因此我们可以只考虑有向图的存储。(1) 邻接矩阵:g[a][b] 存储边a->b(2) 邻接表:// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点 int h[N], e[N], ne[N], idx; // 添加一条边a->b void add(int a, int b) { e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ; } // 初始化 idx = 0; memset(h, -1, sizeof h);树与图的遍历时间复杂度$$ O(n+m) $$,$$ n$$表示点数, $$m$$表示边数(1) 深度优先遍历 —— 模板题 AcWing 846. 树的重心int dfs(int u) { st[u] = true; // st[u] 表示点u已经被遍历过 for (int i = h[u]; i != -1; i = ne[i]) { int j = e[i]; if (!st[j]) dfs(j); } }(2) 宽度优先遍历 —— 模板题 AcWing 847. 图中点的层次queue<int> q; st[1] = true; // 表示1号点已经被遍历过 q.push(1); while (q.size()) { int t = q.front(); q.pop(); for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (!st[j]) { st[j] = true; // 表示点j已经被遍历过 q.push(j); } } }拓扑排序 —— 模板题 AcWing 848. 有向图的拓扑序列时间复杂度$$ O(n+m) $$,$$ n$$表示点数, $$m$$表示边数bool topsort() { int hh = 0, tt = -1; // d[i] 存储点i的入度 for (int i = 1; i <= n; i ++ ) if (!d[i]) q[ ++ tt] = i; while (hh <= tt) { int t = q[hh ++ ]; for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (-- d[j] == 0) q[ ++ tt] = j; } } // 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。 return tt == n - 1; }朴素dijkstra算法 —— 模板题 AcWing 849. Dijkstra求最短路 I时间复杂是$$ O(n2+m),n $$表示点数,$$m$$表示边数int g[N][N]; // 存储每条边 int dist[N]; // 存储1号点到每个点的最短距离 bool st[N]; // 存储每个点的最短路是否已经确定 // 求1号点到n号点的最短路,如果不存在则返回-1 int dijkstra() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; for (int i = 0; i < n - 1; i ++ ) { int t = -1; // 在还未确定最短路的点中,寻找距离最小的点 for (int j = 1; j <= n; j ++ ) if (!st[j] && (t == -1 || dist[t] > dist[j])) t = j; // 用t更新其他点的距离 for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], dist[t] + g[t][j]); st[t] = true; } if (dist[n] == 0x3f3f3f3f) return -1; return dist[n]; }堆优化版dijkstra —— 模板题 AcWing 850. Dijkstra求最短路 II时间复杂度$$ O(mlogn),n $$表示点数,$$m$$表示边数typedef pair<int, int> PII; int n; // 点的数量 int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边 int dist[N]; // 存储所有点到1号点的距离 bool st[N]; // 存储每个点的最短距离是否已确定 // 求1号点到n号点的最短距离,如果不存在,则返回-1 int dijkstra() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; priority_queue<PII, vector<PII>, greater<PII>> heap; heap.push({0, 1}); // first存储距离,second存储节点编号 while (heap.size()) { auto t = heap.top(); heap.pop(); int ver = t.second, distance = t.first; if (st[ver]) continue; st[ver] = true; for (int i = h[ver]; i != -1; i = ne[i]) { int j = e[i]; if (dist[j] > distance + w[i]) { dist[j] = distance + w[i]; heap.push({dist[j], j}); } } } if (dist[n] == 0x3f3f3f3f) return -1; return dist[n]; }Bellman-Ford算法 —— 模板题 AcWing 853. 有边数限制的最短路时间复杂度$$ O(nm),n $$表示点数,$$m$$表示边数注意在模板题中需要对下面的模板稍作修改,加上备份数组,详情见模板题。int n, m; // n表示点数,m表示边数 int dist[N]; // dist[x]存储1到x的最短路距离 struct Edge // 边,a表示出点,b表示入点,w表示边的权重 { int a, b, w; }edges[M]; // 求1到n的最短路距离,如果无法从1走到n,则返回-1。 int bellman_ford() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。 for (int i = 0; i < n; i ++ ) { for (int j = 0; j < m; j ++ ) { int a = edges[j].a, b = edges[j].b, w = edges[j].w; if (dist[b] > dist[a] + w) dist[b] = dist[a] + w; } } if (dist[n] > 0x3f3f3f3f / 2) return -1; return dist[n]; }spfa 算法(队列优化的Bellman-Ford算法) —— 模板题 AcWing 851. spfa求最短路时间复杂度 平均情况下$$ O(m) $$,最坏情况下$$ O(nm),n $$表示点数,$$m$$表示边数int n; // 总点数 int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边 int dist[N]; // 存储每个点到1号点的最短距离 bool st[N]; // 存储每个点是否在队列中 // 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1 int spfa() { memset(dist, 0x3f, sizeof dist); dist[1] = 0; queue<int> q; q.push(1); st[1] = true; while (q.size()) { auto t = q.front(); q.pop(); st[t] = false; for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (dist[j] > dist[t] + w[i]) { dist[j] = dist[t] + w[i]; if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入 { q.push(j); st[j] = true; } } } } if (dist[n] == 0x3f3f3f3f) return -1; return dist[n]; }spfa判断图中是否存在负环 —— 模板题 AcWing 852. spfa判断负环时间复杂度是$$ O(nm),n $$表示点数,$$m$$表示边数int n; // 总点数 int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边 int dist[N], cnt[N]; // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数 bool st[N]; // 存储每个点是否在队列中 // 如果存在负环,则返回true,否则返回false。 bool spfa() { // 不需要初始化dist数组 // 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。 queue<int> q; for (int i = 1; i <= n; i ++ ) { q.push(i); st[i] = true; } while (q.size()) { auto t = q.front(); q.pop(); st[t] = false; for (int i = h[t]; i != -1; i = ne[i]) { int j = e[i]; if (dist[j] > dist[t] + w[i]) { dist[j] = dist[t] + w[i]; cnt[j] = cnt[t] + 1; if (cnt[j] >= n) return true; // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环 if (!st[j]) { q.push(j); st[j] = true; } } } } return false; }floyd算法 —— 模板题 AcWing 854. Floyd求最短路时间复杂度是$$ O(n^3), n $$表示点数初始化: for (int i = 1; i <= n; i ++ ) for (int j = 1; j <= n; j ++ ) if (i == j) d[i][j] = 0; else d[i][j] = INF; // 算法结束后,d[a][b]表示a到b的最短距离 void floyd() { for (int k = 1; k <= n; k ++ ) for (int i = 1; i <= n; i ++ ) for (int j = 1; j <= n; j ++ ) d[i][j] = min(d[i][j], d[i][k] + d[k][j]); }朴素版prim算法 —— 模板题 AcWing 858. Prim算法求最小生成树时间复杂度是$$ O(n2+m),n $$表示点数,$$m$$表示边数int n; // n表示点数 int g[N][N]; // 邻接矩阵,存储所有边 int dist[N]; // 存储其他点到当前最小生成树的距离 bool st[N]; // 存储每个点是否已经在生成树中 // 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和 int prim() { memset(dist, 0x3f, sizeof dist); int res = 0; for (int i = 0; i < n; i ++ ) { int t = -1; for (int j = 1; j <= n; j ++ ) if (!st[j] && (t == -1 || dist[t] > dist[j])) t = j; if (i && dist[t] == INF) return INF; if (i) res += dist[t]; st[t] = true; for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]); } return res; }Kruskal算法 —— 模板题 AcWing 859. Kruskal算法求最小生成树时间复杂度是$$ O(mlogm),n $$表示点数,$$m$$表示边数int n, m; // n是点数,m是边数 int p[N]; // 并查集的父节点数组 struct Edge // 存储边 { int a, b, w; bool operator< (const Edge &W)const { return w < W.w; } }edges[M]; int find(int x) // 并查集核心操作 { if (p[x] != x) p[x] = find(p[x]); return p[x]; } int kruskal() { sort(edges, edges + m); for (int i = 1; i <= n; i ++ ) p[i] = i; // 初始化并查集 int res = 0, cnt = 0; for (int i = 0; i < m; i ++ ) { int a = edges[i].a, b = edges[i].b, w = edges[i].w; a = find(a), b = find(b); if (a != b) // 如果两个连通块不连通,则将这两个连通块合并 { p[a] = b; res += w; cnt ++ ; } } if (cnt < n - 1) return INF; return res; }染色法判别二分图 —— 模板题 AcWing 860. 染色法判定二分图时间复杂度是$$ O(n+m),n $$表示点数,$$m$$表示边数int n; // n表示点数 int h[N], e[M], ne[M], idx; // 邻接表存储图 int color[N]; // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色 // 参数:u表示当前节点,c表示当前点的颜色 bool dfs(int u, int c) { color[u] = c; for (int i = h[u]; i != -1; i = ne[i]) { int j = e[i]; if (color[j] == -1) { if (!dfs(j, !c)) return false; } else if (color[j] == c) return false; } return true; } bool check() { memset(color, -1, sizeof color); bool flag = true; for (int i = 1; i <= n; i ++ ) if (color[i] == -1) if (!dfs(i, 0)) { flag = false; break; } return flag; }匈牙利算法 —— 模板题 AcWing 861. 二分图的最大匹配时间复杂度是$$ O(nm), n $$表示点数,$$m$$表示边数int n1, n2; // n1表示第一个集合中的点数,n2表示第二个集合中的点数 int h[N], e[M], ne[M], idx; // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边 int match[N]; // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个 bool st[N]; // 表示第二个集合中的每个点是否已经被遍历过 bool find(int x) { for (int i = h[x]; i != -1; i = ne[i]) { int j = e[i]; if (!st[j]) { st[j] = true; if (match[j] == 0 || find(match[j])) { match[j] = x; return true; } } } return false; } // 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点 int res = 0; for (int i = 1; i <= n1; i ++ ) { memset(st, false, sizeof st); if (find(i)) res ++ ; }常用模板四:数学知识试除法判定质数 —— 模板题 AcWing 866. 试除法判定质数bool is_prime(int x) { if (x < 2) return false; for (int i = 2; i <= x / i; i ++ ) if (x % i == 0) return false; return true; }试除法分解质因数 —— 模板题 AcWing 867. 分解质因数void divide(int x) { for (int i = 2; i <= x / i; i ++ ) if (x % i == 0) { int s = 0; while (x % i == 0) x /= i, s ++ ; cout << i << ' ' << s << endl; } if (x > 1) cout << x << ' ' << 1 << endl; cout << endl; }朴素筛法求素数 —— 模板题 AcWing 868. 筛质数int primes[N], cnt; // primes[]存储所有素数 bool st[N]; // st[x]存储x是否被筛掉 void get_primes(int n) { for (int i = 2; i <= n; i ++ ) { if (st[i]) continue; primes[cnt ++ ] = i; for (int j = i + i; j <= n; j += i) st[j] = true; } }线性筛法求素数 —— 模板题 AcWing 868. 筛质数int primes[N], cnt; // primes[]存储所有素数 bool st[N]; // st[x]存储x是否被筛掉 void get_primes(int n) { for (int i = 2; i <= n; i ++ ) { if (!st[i]) primes[cnt ++ ] = i; for (int j = 0; primes[j] <= n / i; j ++ ) { st[primes[j] * i] = true; if (i % primes[j] == 0) break; } } }试除法求所有约数 —— 模板题 AcWing 869. 试除法求约数vector<int> get_divisors(int x) { vector<int> res; for (int i = 1; i <= x / i; i ++ ) if (x % i == 0) { res.push_back(i); if (i != x / i) res.push_back(x / i); } sort(res.begin(), res.end()); return res; }约数个数和约数之和 —— 模板题 AcWing 870. 约数个数, AcWing 871. 约数之和如果 N = p1^c1 * p2^c2 * ... *pk^ck 约数个数:$$ (c1 + 1) * (c2 + 1) * ... * (ck + 1) $$ 约数之和:$$ (p1^0 + p1^1 + ... + p1^c1) * ... * (pk^0 + pk^1 + ... + pk^ck) $$`欧几里得算法 —— 模板题 AcWing 872. 最大公约数int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }求欧拉函数 —— 模板题 AcWing 873. 欧拉函数int phi(int x) { int res = x; for (int i = 2; i <= x / i; i ++ ) if (x % i == 0) { res = res / i * (i - 1); while (x % i == 0) x /= i; } if (x > 1) res = res / x * (x - 1); return res; }筛法求欧拉函数 —— 模板题 AcWing 874. 筛法求欧拉函数int primes[N], cnt; // primes[]存储所有素数 int euler[N]; // 存储每个数的欧拉函数 bool st[N]; // st[x]存储x是否被筛掉 void get_eulers(int n) { euler[1] = 1; for (int i = 2; i <= n; i ++ ) { if (!st[i]) { primes[cnt ++ ] = i; euler[i] = i - 1; } for (int j = 0; primes[j] <= n / i; j ++ ) { int t = primes[j] * i; st[t] = true; if (i % primes[j] == 0) { euler[t] = euler[i] * primes[j]; break; } euler[t] = euler[i] * (primes[j] - 1); } } }快速幂 —— 模板题 AcWing 875. 快速幂求 m^k mod p,时间复杂度 O(logk)。 int qmi(int m, int k, int p) { int res = 1 % p, t = m; while (k) { if (k&1) res = res * t % p; t = t * t % p; k >>= 1; } return res; }扩展欧几里得算法 —— 模板题 AcWing 877. 扩展欧几里得算法// 求x, y,使得ax + by = gcd(a, b) int exgcd(int a, int b, int &x, int &y) { if (!b) { x = 1; y = 0; return a; } int d = exgcd(b, a % b, y, x); y -= (a/b) * x; return d; }高斯消元 —— 模板题 AcWing 883. 高斯消元解线性方程组// a[N][N]是增广矩阵 int gauss() { int c, r; for (c = 0, r = 0; c < n; c ++ ) { int t = r; for (int i = r; i < n; i ++ ) // 找到绝对值最大的行 if (fabs(a[i][c]) > fabs(a[t][c])) t = i; if (fabs(a[t][c]) < eps) continue; for (int i = c; i <= n; i ++ ) swap(a[t][i], a[r][i]); // 将绝对值最大的行换到最顶端 for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c]; // 将当前行的首位变成1 for (int i = r + 1; i < n; i ++ ) // 用当前行将下面所有的列消成0 if (fabs(a[i][c]) > eps) for (int j = n; j >= c; j -- ) a[i][j] -= a[r][j] * a[i][c]; r ++ ; } if (r < n) { for (int i = r; i < n; i ++ ) if (fabs(a[i][n]) > eps) return 2; // 无解 return 1; // 有无穷多组解 } for (int i = n - 1; i >= 0; i -- ) for (int j = i + 1; j < n; j ++ ) a[i][n] -= a[i][j] * a[j][n]; return 0; // 有唯一解 }递推法求组合数 —— 模板题 AcWing 885. 求组合数 I// c[a][b] 表示从a个苹果中选b个的方案数 for (int i = 0; i < N; i ++ ) for (int j = 0; j <= i; j ++ ) if (!j) c[i][j] = 1; else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;通过预处理逆元的方式求组合数 —— 模板题 AcWing 886. 求组合数 II首先预处理出所有阶乘取模的余数fact[N],以及所有阶乘取模的逆元infact[N]如果取模的数是质数,可以用费马小定理求逆元int qmi(int a, int k, int p) // 快速幂模板 { int res = 1; while (k) { if (k & 1) res = (LL)res * a % p; a = (LL)a * a % p; k >>= 1; } return res; } // 预处理阶乘的余数和阶乘逆元的余数 fact[0] = infact[0] = 1; for (int i = 1; i < N; i ++ ) { fact[i] = (LL)fact[i - 1] * i % mod; infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod; }Lucas定理 —— 模板题 AcWing 887. 求组合数 III若p是质数,则对于任意整数 1 <= m <= n,有:C(n, m) = C(n % p, m % p) * C(n / p, m / p) (mod p)int qmi(int a, int k, int p) // 快速幂模板 { int res = 1 % p; while (k) { if (k & 1) res = (LL)res * a % p; a = (LL)a * a % p; k >>= 1; } return res; } int C(int a, int b, int p) // 通过定理求组合数C(a, b) { if (a < b) return 0; LL x = 1, y = 1; // x是分子,y是分母 for (int i = a, j = 1; j <= b; i --, j ++ ) { x = (LL)x * i % p; y = (LL) y * j % p; } return x * (LL)qmi(y, p - 2, p) % p; } int lucas(LL a, LL b, int p) { if (a < p && b < p) return C(a, b, p); return (LL)C(a % p, b % p, p) * lucas(a / p, b / p, p) % p; }分解质因数法求组合数 —— 模板题 AcWing 888. 求组合数 IV当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用:筛法求出范围内的所有质数通过 C(a, b) = a! / b! / (a - b)! 这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + ...用高精度乘法将所有质因子相乘int primes[N], cnt; // 存储所有质数 int sum[N]; // 存储每个质数的次数 bool st[N]; // 存储每个数是否已被筛掉 void get_primes(int n) // 线性筛法求素数 { for (int i = 2; i <= n; i ++ ) { if (!st[i]) primes[cnt ++ ] = i; for (int j = 0; primes[j] <= n / i; j ++ ) { st[primes[j] * i] = true; if (i % primes[j] == 0) break; } } } int get(int n, int p) // 求n!中的次数 { int res = 0; while (n) { res += n / p; n /= p; } return res; } vector<int> mul(vector<int> a, int b) // 高精度乘低精度模板 { vector<int> c; int t = 0; for (int i = 0; i < a.size(); i ++ ) { t += a[i] * b; c.push_back(t % 10); t /= 10; } while (t) { c.push_back(t % 10); t /= 10; } return c; } get_primes(a); // 预处理范围内的所有质数 for (int i = 0; i < cnt; i ++ ) // 求每个质因数的次数 { int p = primes[i]; sum[i] = get(a, p) - get(b, p) - get(a - b, p); } vector<int> res; res.push_back(1); for (int i = 0; i < cnt; i ++ ) // 用高精度乘法将所有质因子相乘 for (int j = 0; j < sum[i]; j ++ ) res = mul(res, primes[i]);卡特兰数 —— 模板题 AcWing 889. 满足条件的01序列给定n个0和n个1,它们按照某种顺序排成长度为2n的序列,满足任意前缀中0的个数都不少于1的个数的序列的数量为: Cat(n) = C(2n, n) / (n + 1)NIM游戏 —— 模板题 AcWing 891. Nim游戏给定N堆物品,第i堆物品有Ai个。两名玩家轮流行动,每次可以任选一堆,取走任意多个物品,可把一堆取光,但不能不取。取走最后一件物品者获胜。两人都采取最优策略,问先手是否必胜。我们把这种游戏称为NIM博弈。把游戏过程中面临的状态称为局面。整局游戏第一个行动的称为先手,第二个行动的称为后手。若在某一局面下无论采取何种行动,都会输掉游戏,则称该局面必败。所谓采取最优策略是指,若在某一局面下存在某种行动,使得行动后对面面临必败局面,则优先采取该行动。同时,这样的局面被称为必胜。我们讨论的博弈问题一般都只考虑理想情况,即两人均无失误,都采取最优策略行动时游戏的结果。NIM博弈不存在平局,只有先手必胜和先手必败两种情况。定理: NIM博弈先手必胜,当且仅当 A1 ^ A2 ^ … ^ An != 0公平组合游戏ICG若一个游戏满足:由两名玩家交替行动;在游戏进程的任意时刻,可以执行的合法行动与轮到哪名玩家无关;不能行动的玩家判负;则称该游戏为一个公平组合游戏。NIM博弈属于公平组合游戏,但城建的棋类游戏,比如围棋,就不是公平组合游戏。因为围棋交战双方分别只能落黑子和白子,胜负判定也比较复杂,不满足条件2和条件3。有向图游戏给定一个有向无环图,图中有一个唯一的起点,在起点上放有一枚棋子。两名玩家交替地把这枚棋子沿有向边进行移动,每次可以移动一步,无法移动者判负。该游戏被称为有向图游戏。任何一个公平组合游戏都可以转化为有向图游戏。具体方法是,把每个局面看成图中的一个节点,并且从每个局面向沿着合法行动能够到达的下一个局面连有向边。Mex运算设S表示一个非负整数集合。定义mex(S)为求出不属于集合S的最小非负整数的运算,即:mex(S) = min{x}, x属于自然数,且x不属于SSG函数在有向图游戏中,对于每个节点x,设从x出发共有k条有向边,分别到达节点y1, y2, …, yk,定义SG(x)为x的后继节点y1, y2, …, yk 的SG函数值构成的集合再执行mex(S)运算的结果,即:SG(x) = mex({SG(y1), SG(y2), …, SG(yk)})特别地,整个有向图游戏G的SG函数值被定义为有向图游戏起点s的SG函数值,即SG(G) = SG(s)。有向图游戏的和 —— 模板题 AcWing 893. 集合-Nim游戏设G1, G2, …, Gm 是m个有向图游戏。定义有向图游戏G,它的行动规则是任选某个有向图游戏Gi,并在Gi上行动一步。G被称为有向图游戏G1, G2, …, Gm的和。有向图游戏的和的SG函数值等于它包含的各个子游戏SG函数值的异或和,即:SG(G) = SG(G1) ^ SG(G2) ^ … ^ SG(Gm)定理有向图游戏的某个局面必胜,当且仅当该局面对应节点的SG函数值大于0。有向图游戏的某个局面必败,当且仅当该局面对应节点的SG函数值等于0。 基础PCR实验全流程——从DNA扩增到实验成功 https://blog.zhangyile.site/archives/433/ 2025-01-03T00:23:10+08:00 PCR(聚合酶链式反应)是一种强大的分子生物学技术,用于扩增特定的DNA片段。对于实验室新手来说,掌握基础PCR过程不仅是技能的提升,更是走向科研世界的第一步。那么,今天我们就来聊一聊如何从零开始完成一次基础PCR实验。1. 实验所需材料与准备实验材料:模板DNA——这是你想要扩增的目标DNA片段。引物(Primer)——两条合成的短DNA序列,与目标片段的起始和终止区域互补。dNTPs(脱氧核苷三磷酸)——合成新DNA链的原料。PCR缓冲液——维持反应体系的pH和离子环境。DNA聚合酶(通常是Taq酶)——负责合成DNA。无菌水——用于稀释和补充体积。实验仪器:PCR仪:用于控制温度循环。微量移液器及枪头。冰盒:保存反应组分的稳定性。离心机:短暂离心使溶液混匀。其他辅助工具:记事本或实验记录表,用于记录反应配方和实验结果。无菌手套和防护眼镜,确保操作安全。2. 实验步骤详解(1)配制反应体系将所有试剂按照下表的比例加入PCR管:组分体积(μL)模板DNA1引物(正反向)各1dNTPs0.5缓冲液2Taq酶0.5无菌水补足到20小技巧:为了避免污染,可以在无菌环境下操作,并且每次取样都使用新枪头。Taq酶最后加入,并立即混匀。在冰上操作可以最大程度地保护酶的活性。(2)设置PCR程序典型的PCR程序包括以下步骤:初始变性:94℃,2分钟——将双链DNA变性为单链。循环步骤(30-35个循环):变性:94℃,30秒。退火:55℃,30秒(具体温度依赖于引物序列)。延伸:72℃,1分钟(每1000bp需要约1分钟)。最终延伸:72℃,5分钟。保温:4℃,直到取出。调整建议:如果反应效率不佳,可尝试:增加循环次数。优化退火温度,每次调整2℃。更换更高保真度的DNA聚合酶。(3)运行电泳验证PCR结束后,通过琼脂糖凝胶电泳验证扩增结果:配制1%琼脂糖凝胶,用EB染色。加入6x加载缓冲液,取5μL PCR产物上样。以100bp DNA Marker为对照,电泳后在紫外灯下观察。注意事项:上样时避免气泡,确保样品均匀沉入泳槽。电泳电压通常控制在80-120V,以获得清晰条带。3. 注意事项与经验分享退火温度优化:如果扩增失败,可以尝试调整退火温度(降低2℃或增加2℃)。模板DNA浓度:模板过多或过少都会影响扩增效果,建议使用10-100ng范围内的模板量。污染防控:使用无菌操作,单独设置阴性对照组(不加模板DNA)。准确记录:每次实验的步骤和结果都需详细记录,以便复盘优化。4. 实验成功的标志通过电泳,你应该能看到目标片段大小对应的清晰条带。条带的亮度通常与扩增量成正比。如果出现非特异条带,可以检查:引物设计是否合理。反应条件是否需要优化。试剂是否新鲜。5. 小彩蛋——实际应用成功的PCR实验可以用于:基因克隆。突变分析。病原体检测。古DNA的分析与复原。环境样品中的微生物群落分析。? 延伸阅读:你知道吗?PCR技术是由Kary Mullis在1983年发明的,并因此获得了诺贝尔化学奖。没有PCR,现代生物学研究将举步维艰!配图推荐PCR仪及其操作界面——展示设备。样品加样图片——生动直观。电泳结果示例——对比成功与失败的条带效果。引物设计软件界面截图——便于理解设计过程。希望这篇文章能让你对基础PCR有清晰的了解,期待你的实验也能顺利完成!如果有其他问题,欢迎留言交流✨✨。?? 英语六级备考实战:从零开始的逆袭之路 ? https://blog.zhangyile.site/archives/432/ 2024-12-30T01:05:00+08:00 英语六级备考实战:从零开始的逆袭之路 ?引言嗨,各位正在为英语六级奋斗的朋友!今天我想跟大家分享一下我的备考故事。没错,就是那个曾经觉得英语是“天书”的我,现在居然可以自信满满地面对这场挑战了。如果你也想知道自己是否能够成功逆袭,那就继续往下看吧!我的起点:为什么选择参加英语六级?说实话,当初决定报考英语六级的时候,内心其实是十分纠结的。一方面,听说这门考试难度不小;另一方面,又担心自己准备不够充分。但是,考虑到未来的就业和发展机会,我还是咬咬牙报名了。?实战第一步:评估现状 & 设定目标词汇量测试首先,我通过在线词汇量测试工具(如Quizlet)了解了自己的基础水平。结果并不理想,但没关系,这只是一个起点而已。?确立目标根据个人情况,我为自己设定了以下三个阶段的目标:短期:在一个月内将词汇量提升至6000以上;中期:两个月后能够流畅阅读英文新闻和学术论文;长期:三个月内全面提高听、说、读、写四项技能。备考策略:如何高效学习?每日任务清单为了保证每天都有所进步,我制定了详细的每日任务清单。其中包括但不限于:单词打卡:使用Anki等记忆卡片软件背诵新词;听力练习:收听BBC、NPR等国际广播节目;阅读理解:浏览《经济学人》、《卫报》等英文网站;写作训练:尝试模仿优秀范文进行创作;模拟测试:每周至少完成一次完整的模拟试题。小贴士:不要忘记给自己设定休息时间哦!适当的放松有助于保持良好的状态。?工具与资源推荐词汇积累:Quizlet 和 Anki听力材料:BBC Learning English 和 NPR阅读素材:The Economist 和 The Guardian写作指导:Grammarly 和 Hemingway Editor应对难题:那些让我头疼的部分听力总是跟不上?刚开始接触英语广播时,确实感觉像听天书一样。后来我发现,关键在于找到适合自己的节奏。比如,先从较慢速的播客开始,逐渐适应后再挑战原声电影或TED演讲。此外,多做笔记也有助于加深印象。写作没有灵感?遇到这种情况,我会试着换个角度思考问题。比如,把自己想象成读者,问自己“如果我是他们,最想知道什么?”;或者参考其他作者是如何表达相似观点的。最重要的是,勇敢地写下第一个字,然后不断修改完善。成功经验:那些帮助我成长的小习惯固定学习时间:每天早上7点到8点是固定的英语学习时间段,雷打不动。记录进展:用日记本记录每一天的进步,无论是学会了几个新单词还是读懂了一篇文章。积极交流:加入英语学习社群,和其他小伙伴一起讨论心得、分享资料。结语:相信自己,你已经走到了一半的路上!回顾这段备考历程,虽然途中遇到了不少困难,但我始终坚信只要坚持下去就一定能看到曙光。正如那句话所说:“Believe you can and you're halfway there!”(相信自己,你就已经完成了一半)。希望我的故事能给你带来一些启发和鼓励。加油,我们一起向着梦想前进!?如果你也正在为英语六级而努力,请在评论区留下你的故事或疑问吧!我们共同成长,互相支持。? 关于试卷库资源打包情况 https://blog.zhangyile.site/archives/431/ 2024-07-21T10:14:00+08:00 Main problem经过24年一年的实验,发现主要问题存在于由于网络情况,导致经常会出现目录内容加载较慢,十分影响各位时间,但网络提高宽带不是一点两点钱就能解决的【通常是大几十一个月,宽带高了,流量也要增加】,也想过打包上传,但是打包不方便实时更新基本上好多都是一个月归类一个文件夹。Solution所以想转战对之前的试卷进行打包分享,比如对24年5月,4月的试卷按省份打包,按月份归类,需要的可以直接找到自己的省进行下载。这样即方便的有些同学可以在寒暑假期间利用之前的内容进行巩固,同时,自己可以根据相应政策,获得广告补助,用于购买和获取其他更多资源。对于【大学资源】,由于需要经常更新,可能不会采用打包的形式,但会清理保证比较良好的结构。# 如果你需要实时更新的试卷,请去试卷库 # 如果你需要实时更新的试卷,请去试卷库 public void main(args[]){ return "本文章的链接没法实时更新,大多2周一个更新" } # 文件名格式 月-省-试卷数 :五月江苏6.zipWays本文章会不定期更新,主要就是会在下方更新打包后的链接【链接不会太大,防止有人内存不够无法转存】:[collapse status="false" title="2024年高中五月份试卷【按省打包】"]江苏https://pan.quark.cn/s/0f2f847dcf3f山东https://pan.quark.cn/s/b8379f469a75河南https://pan.quark.cn/s/22f7335dc831河北https://pan.quark.cn/s/26dd75b6d93e辽宁https://pan.quark.cn/s/36c5d4d50027安徽https://pan.quark.cn/s/a285af622edb浙江https://pan.quark.cn/s/f6882892d946江西https://pan.quark.cn/s/debdef628411山西https://pan.quark.cn/s/54b5556ade3e湖北https://pan.quark.cn/s/99dfa0e62311四川https://pan.quark.cn/s/44a5863272cb重庆https://pan.quark.cn/s/4c1b45461fce湖南https://pan.quark.cn/s/b121cc4399a7湖北https://pan.quark.cn/s/d11882ced220广东广西https://pan.quark.cn/s/e8aff48306c2黑龙江吉林https://pan.quark.cn/s/433f0cad76ae北京福建贵州海南宁夏陕西新疆https://pan.quark.cn/s/4dfb52e39bcd[/collapse]下面是不打包的版本[collapse status="true" title="2024年高中五月份试卷【不压缩版本】"]文件很大!可以先勾选出你需要的试卷!,然后分多次转存,不然一次性存不下!!039】5月试卷类,https://pan.quark.cn/s/a0f95e29c776,提取码:y6gc[/collapse][collapse status="true" title="2024年高中四月份试卷【不压缩版本】"]文件很大!可以先勾选出你需要的试卷!,然后分次转存,不然一次性存不下!!032】四月试卷,https://pan.quark.cn/s/52deee842504,提取码:CarB[/collapse][collapse status="true" title="2024年高中四月份试卷【逐个压缩版本】"]032】四月逐个打包试卷,https://pan.quark.cn/s/9ebdf66b3294,提取码:VMUY[/collapse][collapse status="false" title="2024年高中3月份试卷【不压缩版本】"]文件很大!可以先勾选出你需要的试卷!,然后分次转存,不然一次性存不下!!031】3月试卷不压缩,https://pan.quark.cn/s/ca05055932b4,提取码:7vGa[/collapse][collapse status="false" title="2024年高中3月份试卷【逐个压缩版本】"]031】3月试卷逐个压缩,https://pan.quark.cn/s/a7233b5b6cec,提取码:CT2J[/collapse][collapse status="false" title="2024年高中2月份试卷【不压缩版本】"]030】2月试卷不压缩,https://pan.quark.cn/s/7bbb7f6c8032,提取码:tfb3[/collapse][collapse status="false" title="2024年高中2月份试卷【逐个压缩版本】"]030】2月试卷逐个压缩,https://pan.quark.cn/s/cbddbb126c97,提取码:FeMP[/collapse]11表格测试!!col2col3032】四月逐个打包试卷,提取码:VMUY032】四月逐个打包试卷,提取码:VMUY032】四月逐个打包试卷,提取码:VMUY032】四月逐个打包试卷,提取码:VMUY032】四月逐个打包试卷,提取码:VMUY032】四月逐个打包试卷,提取码:VMUY[tabs][tab name="标签页 1" active="true"]标签页测试内容 1[/tab][tab name="标签页 2"]内容 2[/tab][/tabs][column][block] 普通的一列 [/block][block size="20%"]该列的宽度只有20%[/block][block size="200px"]该列的宽度只有200像素 [/block][/column][scode type="yellow" size="small"]这里编辑标签内容/scode这里编辑标签内容[/scode]如果有什么问题或者有更好的分类方法,直接评论区大胆留言其他说明:如果你反感夸克反复要求你开会员,可以不必理会,虽然他会限速,限制画质,但速度应该能到1MB。如果你还是嫌弃,可以留言需要什么资源,有空会上传到试卷库,试卷库的对象储存一般来说是不限速的,尤其是大学资源,有很多网课,夸克能下一整天,试卷库全看你自己了。如果你觉得有更好的其他网盘的分享途径,可以留言考虑??先试用三天,因为每天最大更新量大约只能到200GB,毕竟自己宽带就那么大,也不可能通宵转移会员不用乱开!如果有东西你想要多个下载,但手头经济紧张,而且夸克ex人,都可以找我我单独抽发你【tx一天非会员只能传2GB,可能还需要你去挑一些你觉得合适的来转发给你】,后面会一直更新这个文章,会采用压缩打包以及控制子文件夹数量还有文件大小 来规避 夸克限制 YUZU 羽生结弦 生日快乐! https://blog.zhangyile.site/archives/429/ 2023-12-07T05:20:00+08:00 祝我们的羽生结弦生日快乐!! ::(蛋糕) ::(蛋糕) 希望我们的少年永远被幸运眷顾,永远开开心心,健健康康的,我会一生应援! 突然想起来自己还有一个博客 https://blog.zhangyile.site/archives/425/ 2023-10-31T06:34:00+08:00 突然想起来自己还有一个博客好久没看自己的博客了,很惊讶他居然还能存在,最近是忙傻掉了那就用来记录学医的过程中发疯日常以及学习c语言日常吧。(可能会更新一些医学用语和话题,c语言也有,但不会很多) zyl的试卷库 https://blog.zhangyile.site/archives/420/ 2022-11-29T22:30:00+08:00 zyl的试卷库,长期更新各地高三期中卷,月考试卷,不到高考前不罢休,提供多样化试卷平台!(主要攒了一堆自己写不完 ...)自己淋了雨才知道把别人伞给吧唧吧唧~~{dotted startColor="#ff6c6c" endColor="#1989fa"/}.懒人链接【所有资料合集】:https://sj.zhangyile.site/..备用地址【所有资料合集】: https://sj.zhangyile.site/.{dotted startColor="#ff6c6c" endColor="#1989fa"/}1.长期更新。坚持三到四天一次更新,一般都会晚上及时更新,偶尔看到的比较好的资源也会丢进来。2.资源多样。乐乐收录了尽可能多的最近的试卷,还有电子教辅资料,也有各地真题分类汇编,还有一些投机之类的答题模板(武功秘籍),还有各科的讲义(推荐自行分辨质量)。还有一些写作素材,难点突破.....但网站呢,还是主要以各地试卷为主,便于自己刷题和有需要的人下载(还想要啥留言区尽管提!)3.坚持中高质量。一般都选择至少能看清字的,不是非常模糊的放进来,字都难以辨别的统统过滤掉,尽力保证自己和别人写的时候舒服一点。一些讲义资料能丢docx就放docx,也方便有需要的人自行整理编辑。4.免费下载。啊,对对对,不收费,学习资料收费还有啥意思捏,各个资料需要自取【目前状态还能撑一段时间】,如果能有赞助的,"臣不胜犬马怖惧之情,谨拜表以闻"。毕竟一个人肝网站,有些难度简直是简直了6.提供预览+直链。网站【主线路】用的是阿里的在线office viewer,方便下载前判断试卷和资料质量。第二个文件夹是【备用线路】这边仅仅提供直接下载,两个线路我会尽量保证内容同步!6.多学长学姐帮助。哎嘿,想不到吧,暗中也有人支持捏!也在此感谢所有参与帮助的人!最后 愿各位所有的努力和期待,都能不负光阴不负卿万事可期!{dotted startColor="#ff6c6c" endColor="#1989fa"/}{lamp/}5.上方懒人链接合集!1{dotted startColor="#ff00ea" endColor="#1989fa"/}祝高考上岸捏!★【聚精会神】 学习工作必备的背景音乐★{anote icon="fa-music" href="https://music.163.com/#/playlist?id=2829821753" type="secondary" content="原歌单链接"/}{music-list id="7756225924" color="#1989fa" /} 欢迎使用 https://blog.zhangyile.site/archives/1/ 2022-02-09T23:51:00+08:00 如果您看到这篇文章,表示乐乐的 blog 已经安装成功顺便各位新年快乐!{music-list id="6806401943" color="#1989fa" /}.